Dalamgeometri pun, jarak dua bangun didefinisikan sebagai panjang ruas garis terpendek yang menghubungkan dua titik pada bangun-bangun Titik B tegak lurus dengan garis EG di titik P sehingga bisa diwakili segitiga BEP. Kemudian kita akan tentukan panjang EP dan BE. Maka panjang BP diperoleh d engan menggunakan rumus phytagoras diperoleh: PanjangAG pada bangun A adalah 10√3 sedangkan panjang AG pada bangun B adalah 5√6. Hasil tersebut diperoleh dengan teorema pythagoras. Teorema pytagoras berlaku pada segitiga siku-siku. Misal sisi miring (sisi terpanjang) pada sebuah segitiga adalah c, sedangkan dua sisi lainnya adalah a dan b, maka berlaku rumus: a² + b² = c² Sehingga diperoleh Askedby wiki @ 05/08/2021 in Matematika viewed by 24136 persons. Asked by wiki @ 02/08/2021 in Matematika viewed by 21874 persons. Asked by wiki @ 20/08/2021 in Matematika viewed by 15749 persons. Asked by wiki @ 10/08/2021 in Matematika viewed by 4927 persons. Asked by wiki @ 31/07/2021 in Matematika viewed by 4862 persons. Asked by wiki @ 16/08/2021 in Matematika viewed by 4133 persons Tentukanpanjang EG dan AG dari bangun berikut! A B 10 D f C bar E F 10 H 10 G Di dalam lingkaran yang berdiameter 20cm terdapat sebuah juring dengan besar sudutpusat 450. Agarlebih mudah, kita gambar terlebih dahulu bentuk kubus sesuai dengan poin yang ada pada soal. Dari gambar di atas, dapat kita ketahui bahwa : Jarak titik E ke bidang AFH = Panjang EQ. EQ adalah jarak titik E ke garis AP denga P titik tengah EG. EG adalah diagonal sisi . Panjang EG adalah : EG = √(EF² + FG²) = √(6² + 6²) = √(36 Tentukanpanjang AG dari bangun berikut. Penggunaan Teorema Phytagoras Dalam Bangun Datar dan Bangun Ruang; TEOREMA PHYTAGORAS; GEOMETRI; Matematika; Share. Cek video lainnya. Sukses nggak pernah instan. Latihan topik lain, yuk! Matematika; Fisika; Kimia; 12. SMAPeluang Wajib; Kekongruen dan Kesebangunan; ATuW. Penjelasan dengan langkah-langkahKubus EG diagonal sisiEG = s√2EG = 10√2Panjang AG diagonal ruangAG = s√3AG = 10√3 akuprofreefire.....mabar mau gk id 3206918706 Soal7th-9th gradeMatematikaSiswaIngin jawaban terperinci dengan cepatSolusi dari Guru QANDAQanda teacher - AndilMPB3TBeritahu apabila masih ada yang tidak dimengerti yah!Qanda teacher - AndilMPB3TMasih ada yang tidak dimengerti?Coba bertanya ke Guru QANDA. Aku salah bukan 15 tapi 20 Penjelasan dengan langkah-langkahTentukan dahulu diagonal bidang EGEG = √EH² + GH²EG = √5² + 5²EG = √5² × 2EG = 5√2Maka, panjang diagonal ruang AG adalahAG = √AE² + EG²AG = √10² + 5√2²AG = √100 + 50AG = √150AG = 5√6Semoga Bermanfaat Contoh saol diagonal bidang dan diagonal ruang pilihan gandaContoh soal 1Balok dengan ukuran panjang 10 cm, lebar 8 cm, dan tinggi 6 cm. Panjang diagonal ruangnya adalah …A. 10 cmB. 12 cmC. √ 200 cmD. √ 400 cmPembahasanDiagonal ruang balok ditunjukkan oleh garis merah AC gambar dibawah merah AC menunjukkan diagonal ruang balokUntuk menghitung AC, tentukan terlebih dahulu panjang AB merupakan diagonal bidang alas balok dengan cara menggunakan rumus pythagoras dibawah = √10 cm2 + 8 cm2 AB = √100 cm2 + 64 cm2 AB = √164 cm2 Kemudian hitung panjang AC dengan cara menggunakan rumus pythagoras dibawah = √AB2 + BC2 AC = √ √ 164 cm2 + 6 cm2 AC = √164 cm2 + 36 cm2 AC = √200 cm2 = √ 200 cmSoal ini jawabannya soal 2Diketahui panjang diagonal ruang sebuah kubus adalah 40 √ 3 . Panjang diagonal bidangnya adalah …A. 20 √ 2 B. 20 √ 3 C. 40D. 40 √ 2 PembahasanPembahasan soal diagonal ruang kubus nomor 2Berdasarkan gambar diatas, untuk menentukan diagonal bidang AB, hitung terlebih dahulu nilai s dengan cara menggunakan rumus pythagoras dibawah = AB2 + BC2 40√3 2 = √2s2 2 + s2 = 2s2 + s2 = 3s2 s2 = = s = √ = 40Jadi panjang diagonal bidang AB sebagai = √2s2 = √2 . 402 AB = 40√2 Soal ini jawabannya soal 3Diketahui panjang diagonal ruang kubus adalah √ 192 cm. Berapakah panjang rusuk kubus tersebut?.A. 9 cmB. 8 cmC. 7 cmD. 6 cmPembahasanPembahasan soal diagonal bidang dan diagonal ruang nomor 3Berdasarkan gambar diatas, cara menghitung panjang rusuk s sebagai = AB2 + BC2 √192 2 = √2s2 2 + s2 192 = 2s2 + s2 = 3s2 s2 = 1923 = 64 s = √64 = 8Soal ini jawabannya soal nomor 1Perhatikan bangun soal diagonal bidang dan diagonal ruang nomor 1Jika diketahui panjang AB = BC = CG = 4 cm, JK = 3 cm, dan BJ = 1 cm, hitunglah panjang AC, AK, dan AC sebagai = √AB2 + BC2 AC = √4 cm2 + 4 cm2 AC = 2√2 cmPanjang AK sebagai ruang AKAK = √52 + 12 AK = √25 + 1 AK = √26 cmPanjang LG = AK = √ 26 soal 2Perhatikan bangun soal diagonal bidang dan diagonal ruang nomor 2Jika diketahui AB = 5 cm, AE = BC = EF = 4 cm, hitunglah panjang AC, EG, DF, dan AC sebagai = √AB2 + BC2 AC = √5 cm2 + 4 cm2 AC = √41 cmPanjang EG sebagai = √EF2 + FG2 EG = √4 cm2 + 4 cm2 EG = 4√2 cmPanjang DF sebagai diagonal ruang DFDF = √4 √ 2 cm2 + 4 cm2 DF = √32 cm2 + 16 cm2 DF = √48 cm2 = 4 √ 3 cmPanjang AG = DF = 4 √ 3 soal nomor 3Contoh soal diagonal bidang dan diagonal ruang nomor 3Dari gambar disamping, jika diketahui panjang AB = 8 cm, BC = 6 cm dan EC = 5 √ 5 cm, berapakah luas segitiga AEC dan AC sebagai = √AB2 + BC2 AC = √8 cm2 + 6 cm2 AC = 10 cmPanjang AE sebagai = √CE2 + AC2 AE = √5 √ 5 cm2 – 10 cm2 AE = √125 cm2 + 100 cm2 AE = √25 cm2 = 5 cmLuas segitiga AEC sebagai AEC = 1/2 x AC x AELuas AEC = 1/2 x 10 cm x 5 cm = 25 cm2Luas segitiga ABC sebagai ABC = 1/2 x AB x BCLuas ABC = 1/2 x 8 cm x 6 cm = 24 cm2Contoh soal 4Diketahui limas dengan alas berbentuk persegi seperti soal diagonal bidang dan diagonal ruang nomor 1Panjang BD = 12 √ 2 cm dan TO = 8 cm. Tentukana. luas segitiga TBCb. Volume limas AB = AD = BC sebagai = AB2 + AD2 AB = BD, karena persegiBD2 = AB2 + AB2BD2 = 2AB2BD = AB √ 2 12 √ 2 = AB √ 2 AB = 12 cmHitung tinggi segitiga = tinggi segitiga TBCTM = √OT2 + OM2 TM = √8 cm2 + 6 cm2 TM = 10 cmLuas segitiga TBC sebagai TBC = 1/2 x BC x TMLuas TBC = 1/2 x 12 cm x 10 cmLuas TBC = 60 cm2Volume limas sebagai = 1/3 x Luas ABCD x OTVolume = 1/2 x 12 cm x 12 cm x 8 cmVolume = 576 cm3Contoh soal 5Suatu kepanitiaan membuat papan nama dari kertas yang membentuk bangun seperti soal diagonal bidang dan diagonal ruang nomor 5Ternyata ABE membentuk segitiga sama sisi, panjang BF = 13 cm dan BC = 12 cm. Berapakah ukuran kertas yang digunakan untuk membuat papan nama tersebut?.PembahasanPanjang CF sebagai = √BF2 + BC2 CF = √13 cm2 + 12 cm2 CF = 5 cmUkuran kertas yang digunakan sebagai kertas = 3 x Luas BCEFUkuran kertas = 3 x BC x EFUkuran kertas = 3 x 12 cm x 5 cm = 180 cm3

tentukan panjang eg dan ag dari bangun berikut